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We used the Auto-Rotating Perceptron (ARP) neural unit
to calibrate a wearable sensor.
Our results show that when changing classic perceptrons
to ARP, the test loss of the sigmoid networks was
reduced by a factor of 15.
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Introduction — Motivation

@ Sports analysis techniques help athletes to increase their performance and
to avoid incorrect practices that could lead to injuries.

@ At sports court: Qualitatively evaluation is done by the coach.
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Introduction — Motivation

@ Sports analysis techniques help athletes to increase their performance and
to avoid incorrect practices that could lead to injuries.

@ At sports court: Qualitatively evaluation is done by the coach.

Figure 1: Volleyball athlete executing the technical reception gesture.

@ Main problems: Lack of: objective assessment and wearable sensing.
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Introduction — Motivation

@ Research project:

o Deals with biomechanical characterization of the service reception in volleyball.
o A key cuantitative measurement is the Ground Reaction Force (GRF).
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Introduction — Motivation

@ Research project:
o Deals with biomechanical characterization of the service reception in volleyball.
o A key cuantitative measurement is the Ground Reaction Force (GRF).
o Reliable sensors available are expensive, not portable and of limited area (such
as the AMTI force plate).

Figure 2: AMTI sensor with its wooden pallet (left) and volleyball athlete
executing reception service on the AMTI sensor at the sports court (right).
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Introduction — Motivation

@ Research project:
o Deals with biomechanical characterization of the service reception in volleyball.
o A key cuantitative measurement is the Ground Reaction Force (GRF).
o Reliable sensors available are expensive, not portable and of limited area (such
as the AMTI force plate).

Figure 2: AMTI sensor with its wooden pallet (left) and volleyball athlete
executing reception service on the AMTI sensor at the sports court (right).

e More information about the project: https://youtu.be/z8aMbl0Up_I.
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Problem definition — WEVES

@ An insole-type WEarable VErtical Sensor system (WEVES) for GRF mea-
surement was developed at GIRAB laboratory, see Figure 3.

Figure 3: (a) WEVES with insole detail. (b) Stand-up straight position test
with AMTI (red) and WEVES (green) sensors.
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Problem definition — WEVES

@ An insole-type WEarable VErtical Sensor system (WEVES) for GRF mea-
surement was developed at GIRAB laboratory, see Figure 3.

Figure 3: (a) WEVES with insole detail. (b) Stand-up straight position test
with AMTI (red) and WEVES (green) sensors.

o WEVES measurement signal w must be as close as possible to the AMTI
reference signal p.
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Problem definition — WEVES calibration

@ Results from the WEVES output w and the AMTI platform signal p show
the same shape with differences in amplitude, for all movements tested.

AMTI and uncalibrated WEVES signals
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Figure 4. Force measurements (N): AMTI (p, red) and uncalibrated WEVES
(w, green).
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Figure 4. Force measurements (N): AMTI (p, red) and uncalibrated WEVES
(w, green).

@ Same shape
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Problem definition — WEVES calibration

@ Results from the WEVES output w and the AMTI platform signal p show
the same shape with differences in amplitude, for all movements tested.
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Figure 4. Force measurements (N): AMTI (p, red) and uncalibrated WEVES
(w, green).

@ Same shape — What happens if we scale the signal w until we reach p?
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Problem definition — WEVES calibration requires scaling

@ What happens if we scale the signal w until we reach p?

daniel.saromo@pucp.pe Smart Sensor Calibration using ARP



Problem definition — WEVES calibration requires scaling

@ What happens if we scale the signal w until we reach p?

Figure 5. Force measurements (N): AMTI (p, red) and scaled WEVES (Kw,

blue).
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Problem definition — WEVES calibration requires scaling

@ What happens if we scale the signal w until we reach p?

Figure 5. Force measurements (N): AMTI (p, red) and scaled WEVES (Kw,

blue).
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@ We need to find the calibration factor K that makes p and K'w similar.

daniel.saromo@pucp.pe

Smart Sensor Calibration using ARP

7/17



Problem definition — WEVES calibration requires scaling

@ How much do we have to /ift the WEVES signal in order to reach p?

Force signal [N]

Figure 6: Force measurements (N) overlapped: AMTI (p, red), uncalibrated
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WEVES (w, green), and scaled WEVES (Kw, blue).
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Problem definition — WEVES calibration requires scaling

@ How much do we have to /ift the WEVES signal in order to reach p?

Force signal [N]

Figure 6: Force measurements (N) overlapped: AMTI (p, red), uncalibrated
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WEVES (w, green), and scaled WEVES (Kw, blue).

@ In real applications, only the WEVES signal w will be available to find the
corresponding calibration factor K.
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Methodology — Calculating the calibration factor K

o WEVES calibration posed as a supervised regression problem.

o Input: w. Output: K.
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Methodology — Calculating the calibration factor K

o WEVES calibration posed as a supervised regression problem.

o Input: w. Output: K.

@ Dataset generation: We measured the difference between p and scaled
w using the Root Mean Square Error (RMSE). Then, finding K is posed
as an optimization problem:

K = arg min {RMSE (p, Kw)}, K > 0.
K
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Figure 7: Searching the K values that make p and K'w similar.

o Optimizers tested to calculate K: Artificial Bee Colony (ABC) and Particle
Swarm Optimization (PSO).
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Methodology — Calculating the calibration factor K

@ Factor K prediction: We trained four neural regression model types to
predict the target K using only w.

Deep Learning

>W s

Figure 8: Inferring K from the WEVES signal w.

daniel.saromo@pucp.pe Smart Sensor Calibration using ARP



Methodology — Calculating the calibration factor K

@ Factor K prediction: We trained four neural regression model types to
predict the target K using only w.

Deep Learning

>W s

Figure 8: Inferring K from the WEVES signal w.

o We looked for reducing the loss prediction error of the regression. For this
problem, we tested the effect of changing classic perceptrons to Auto-Rotating
Perceptrons (ARP), with two activation functions (ReLU and sigmoid).
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Methodology — What is an Auto-Rotating Perceptron?
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Methodology — What is an Auto-Rotating Perceptron?

Tn

fx)=w-x+wozg =1

daniel.saromo@pucp.pe Smart Sensor Calibration using ARP



Methodology — What is an Auto-Rotating Perceptron?

Zo

Z1

Tn

f(x) =w-x+wyxo
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Methodology — What is an Auto-Rotating Perceptron?
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Figure 9: Classic perceptron (left) and ARP (right).
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Methodology — What is an Auto-Rotating Perceptron?
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fx)=w-x+wozg =1

Figure 9: Classic perceptron (left) and ARP (right).

@ The ARP, proposed by Saromo et al. [1], is an innovative neural unit that
aims to avoid the vanishing gradient problem by making the z inputs of
the perceptron activation o(z) near zero with no learning alteration.

@ The modification is achieved by multiplying the linear transformation f(x)
with an scalar coefficient p before the activation function o(-).

@ ARP has two hyperparameters: xg = (2@, -+ ,zg) € R" and L € R.

daniel.saromo@pucp.pe Smart Sensor Calibration using ARP 11/17



Methodology — Dynamic region of the neurons

e e.g., o(z): Unipolar sigmoid. If 6/(2) ~ 0 — Unwanted node saturation.
@ Nodes need to be in their dynamic region £. ARP let us control that.
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Figure 10: Sigmoid activation function o(z) and its derivative.
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Methodology — Dynamic region of the neurons

e e.g., o(z): Unipolar sigmoid. If 6/(2) ~ 0 — Unwanted node saturation.
@ Nodes need to be in their dynamic region £. ARP let us control that.
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Figure 10: Sigmoid activation function o(z) and its derivative.
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Experimentation — Learning results

@ ARP hyperparameters: zg = 2.6, since the maximum input value is 1 <
x@; and L = 3, because the sigmoid derivative isn't very small for |z| < 3.
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Experimentation — Learning results

@ ARP hyperparameters: zg = 2.6, since the maximum input value is 1 <
x@; and L = 3, because the sigmoid derivative isn't very small for |z| < 3.
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Figure 11: Comparison of the four model types tested. For each model family:
50 executions with 100 epochs per execution.
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Figure 11: Comparison of the four model types tested. For each model family:

50 executions with 100 epochs per execution.
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Experimentation — Calibration results
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Figure 12: Force measurements (N) overlapped: AMTI (p, red); uncalibrated

WEVES (w, green); scaled WEVES (K'w, blue) with K calculated using p and
w; and calibrated WEVES (Kw, blue) with K calculated using only w.
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Conclusion — Key Takeaways

@ We employed the ARP neural unit aiming to calibrate a wearable GRF
sensor.

@ ARP-sigmoid networks can have a better performance than ReLU networks
with classic neurons without altering the inference structure learned
by the perceptron.

@ Compared with classic perceptrons that use sigmoid, the test loss of the
sigmoid-ARP networks was reduced by a factor of 15 at the cost of
increasing the execution time by ~12%.
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More information about the ARP neural unit available at:
https://danielsaromo.xyz/ARP
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