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We used the Auto-Rotating Perceptron (ARP) neural unit
to calibrate a wearable sensor.

Our results show that when changing classic perceptrons
to ARP, the test loss of the sigmoid networks was

reduced by a factor of 15.
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Introduction — Motivation

Sports analysis techniques help athletes to increase their performance and
to avoid incorrect practices that could lead to injuries.

At sports court: Qualitatively evaluation is done by the coach.

Figure 1: Volleyball athlete executing the technical reception gesture.

Main problems: Lack of: objective assessment and wearable sensing.
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Introduction — Motivation

Research project:

Deals with biomechanical characterization of the service reception in volleyball.
A key cuantitative measurement is the Ground Reaction Force (GRF).

Reliable sensors available are expensive, not portable and of limited area (such
as the AMTI force plate).

Figure 2: AMTI sensor with its wooden pallet (left) and volleyball athlete
executing reception service on the AMTI sensor at the sports court (right).

More information about the project: https://youtu.be/z8aMblOUp_I.
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Problem definition — WEVES

An insole-type WEarable VErtical Sensor system (WEVES) for GRF mea-
surement was developed at GIRAB laboratory, see Figure 3.
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Figure 3: (a) WEVES with insole detail. (b) Stand-up straight position test
with AMTI (red) and WEVES (green) sensors.

WEVES measurement signal w must be as close as possible to the AMTI
reference signal p.
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Problem definition — WEVES calibration

Results from the WEVES output w and the AMTI platform signal p show
the same shape with differences in amplitude, for all movements tested.
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Figure 4: Force measurements (N): AMTI (p, red) and uncalibrated WEVES
(w, green).

Same shape → What happens if we scale the signal w until we reach p?
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Problem definition — WEVES calibration requires scaling

What happens if we scale the signal w until we reach p?
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Figure 5: Force measurements (N): AMTI (p, red) and scaled WEVES (Kw,
blue).

We need to find the calibration factor K that makes p and Kw similar.
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Problem definition — WEVES calibration requires scaling

How much do we have to lift the WEVES signal in order to reach p?
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Figure 6: Force measurements (N) overlapped: AMTI (p, red), uncalibrated
WEVES (w, green), and scaled WEVES (Kw, blue).

In real applications, only the WEVES signal w will be available to find the
corresponding calibration factor K.
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Methodology — Calculating the calibration factor K

WEVES calibration posed as a supervised regression problem.

Input: w. Output: K.

1 Dataset generation: We measured the difference between p and scaled
w using the Root Mean Square Error (RMSE). Then, finding K is posed
as an optimization problem:

K = argmin
K

{RMSE (p, Kw)} , K > 0.

Pruebas

►

►

►

Figure 7: Searching the K values that make p and Kw similar.

Optimizers tested to calculate K: Artificial Bee Colony (ABC) and Particle
Swarm Optimization (PSO).
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Methodology — Calculating the calibration factor K

2 Factor K prediction: We trained four neural regression model types to
predict the target K using only w.

Pruebas

►

►

►

Figure 8: Inferring K from the WEVES signal w.

We looked for reducing the loss prediction error of the regression. For this
problem, we tested the effect of changing classic perceptrons to Auto-Rotating
Perceptrons (ARP), with two activation functions (ReLU and sigmoid).
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Methodology — What is an Auto-Rotating Perceptron?

Figure 9: Classic perceptron (left) and ARP (right).

The ARP, proposed by Saromo et al. [1], is an innovative neural unit that
aims to avoid the vanishing gradient problem by making the z inputs of
the perceptron activation σ(z) near zero with no learning alteration.

The modification is achieved by multiplying the linear transformation f(x)
with an scalar coefficient ρ before the activation function σ(·).
ARP has two hyperparameters: xQ = 〈xQ, · · · , xQ〉 ∈ Rn and L ∈ R.
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Methodology — Dynamic region of the neurons

e.g., σ(z): Unipolar sigmoid. If σ′(z) ≈ 0→ Unwanted node saturation.
Nodes need to be in their dynamic region L. ARP let us control that.
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Figure 10: Sigmoid activation function σ(z) and its derivative.
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Experimentation — Learning results

ARP hyperparameters: xQ = 2.6, since the maximum input value is 1 <
xQ; and L = 3, because the sigmoid derivative isn’t very small for |z| ≤ 3.
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Figure 11: Comparison of the four model types tested. For each model family:
50 executions with 100 epochs per execution.
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Experimentation — Calibration results
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Figure 12: Force measurements (N) overlapped: AMTI (p, red); uncalibrated
WEVES (w, green); scaled WEVES (Kw, blue) with K calculated using p and
w; and calibrated WEVES (K̂w, blue) with K̂ calculated using only w.
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Conclusion — Key Takeaways

We employed the ARP neural unit aiming to calibrate a wearable GRF
sensor.

ARP-sigmoid networks can have a better performance than ReLU networks
with classic neurons without altering the inference structure learned
by the perceptron.

Compared with classic perceptrons that use sigmoid, the test loss of the
sigmoid-ARP networks was reduced by a factor of 15 at the cost of
increasing the execution time by ∼12%.
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